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Tracer dispersion in two-dimensional rough fractures
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Benjamin Levich Institute and Department of Physics, City College of the City University of New York, New York, New York 1
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Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are
studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann
approach, using a boundary condition for tracer particles that improves the accuracy of the method. The
reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different
fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient
in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied
when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a
lateral shift as well. Numerical results are analyzed using theL parameter, related to convective transport
within the fracture, and simple arguments based on lubrication approximation. At very low Pe´clet number, in
the case where fracture surfaces are laterally shifted, we show using several different methods that convective
transport reduces dispersion.
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I. INTRODUCTION

Tracer spreading in flows between parallel walls has
ceived considerable attention since the celebrated wor
Taylor @1#. This problem is of fundamental importance in
variety of fields and, in particular, transport process
through artificial or natural porous media. In general,
dispersion of a tracer carried along by a flowing fluid in
medium of disordered structure, such as hydrocarbon or
ter reservoirs, involves a combination of convection and d
persion through the microscopic pore space of the rock it
and through macroscopic channels such as fractures. In
simplest case of Poiseuille flow in a Hele-Shaw cell, wh
in several applications is used to model fractures@2–5#, the
vanishing velocity near the solid gives rise to a large disp
sion, quadratic in the Pe´clet number@1,6#. However, one
frequently encounters systems in which the channel aper
varies along the flow direction or in which the channel wa
have some rugosity. This is the case for fractured rocks
which fractured boundaries can be usually described as
related, self-affine fractals@7#. The roughness exponent
usually found to be close to 0.8 and to be insensitive to
material and to the fracturing process@8–10#. Most of the
studies dealing with varying channel aperture model the fl
tuations as slowly varying periodic functions@11#. Only a
few works deal with more realistic models of fractures, su
as random rugosities perpendicular to the flow@12# or self-
affine fractures@13,14#.

In the present paper we present numerical simulation
tracer diffusion and dispersion in self-affine fractures. T
simulations are two dimensional and the fluid flow and tra
spreading are computed using the lattice-Boltzmann~LB!
method. We will first discuss, in Sec. II, the implementati
of the LB method to simulate diffusive transport. We sh
propose a boundary condition which improves the accur
and validity of the method, particularly when describing n
row fractures. In Sec. III we will evaluate this boundary co
dition against previous ones in two different cases: Diffus
~Sec. III A! and Taylor dispersion~Sec. III B! in a two-
dimensional straight channel.
1063-651X/2001/63~5!/056104~11!/$20.00 63 0561
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After reviewing some basic facts about self-affine s
faces~Sec. IV!, we investigate, in Sec. V, how the comple
geometry of fracture surfaces affects the diffusive transp
~zero mean flow velocity!. We also study the dependence
diffusivity on the size of the gap between complementa
fracture surfaces. We will show that it is possible to deri
an analytic expression, which accounts for the geometric
fects on the diffusivity, in the limiting case where the roug
ness associated with the fracture surface is small comp
to the mean aperture.

In Sec. VI we study dispersive transport in two differe
situations: first, when the two surfaces are simply displa
normally to the mean fracture plane. In this case, we w
show that a description in terms of a parameterL, related to
dynamically connectedpore space, accounts for a large pa
of the dispersion enhancement due to low-velocity zones
the fracture channel. Second, we show that when there
lateral shift as well as a normal displacement, an increas
dispersion is obtained. Finally, we present a result show
that dispersion is diminished in the presence of convectio
low Péclet numbers. This effect is found when the surfac
are shifted and the convective transport is weak enough

II. LATTICE-BOLTZMANN MODEL
WITH THE BGK COLLISION OPERATOR

Our goal is to study various aspects of transport in fr
tures which are sensitive to the fracture roughness. Since
consider convection and dispersion in a highly irregular
ometry, the lattice-Boltzmann method@15–17# is particularly
convenient. In this algorithm, fictitious particles move b
tween neighboring sites on a lattice, with suitable collisi
rules, and the boundary of the flow domain is simply a s
face of sites where boundary condition rules should be
posed. We use a version of the LB model first proposed
Qian et al. @18#, with a cubic lattice in 3 dimensions and 1
velocities~D3Q19 in the terminology of@18#!. The collision
operator is approximated by a single relaxation parametel,
©2001 The American Physical Society04-1
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GERMAN DRAZER AND JOEL KOPLIK PHYSICAL REVIEW E63 056104
the Bhatnagar-Gross-Krook~BGK! model@19#, and the local
equilibrium distribution given in@18# is used. This pseu
doequilibrium distribution locally preserves mass and m
mentum values, and is formulated specifically to recover
Navier-Stokes equation at large length and time scales
usual, we use the lattice spacing as the unit length and
time step in the simulations as the unit time. In the followin
quantities will be measured in terms of the lattice spac
and simulation time step. Note that, since we are concer
with incompressible flows, we do not need to introduce
dimension of mass.

The model used for miscible fluids is a straightforwa
extension of the model restricted to describe simple flu
Following the convention of Rothman and Zaleski@16#, we
will distinguish between particle types by assuming that
particles are colored. The pseudo equilibrium color distrib
tion given in @16# is used, and a single relaxation parame
lD ~BGK approximation! is used in the equation that de
scribes the advection and diffusion of color. In addition
mass and momentum, color is also a conserved quantity

The basic variables of the model are the distribution fu
tions Ni , corresponding to the mean occupation number
particles in the directioni at a given node, andD i , describ-
ing the relative amount of color@20#. Since the evolution of
the total population is independent of the color of the p
ticles, the hydrodynamic equations for mass and momen
may be obtained as in the simple fluid case. In other wo
the time evolution of theNi ’s is independent of theD i ’s.
These evolution equations are then coupled to the evolu
of color, through the local fluid velocity. Thus, the diffusiv
behavior of the fluids is superimposed on the underly
Navier-Stokes dynamics.

The fact that the information on mass density and flow
decoupled from the information on color opens the possi
ity of imposing different boundary conditions~BC’s! on the
populations describing fluid flow (Ni) and those describing
advective-diffusive transport (D i). Specifically, for a nonslip
BC on the solid surface, we shall use the simplest implem
tation of particle exclusion—the bounce-back rule~BB!,
where the particles incident on the boundary are propag
back into the directions from which they came. On the ot
hand, for color concentration a different macroscopic BC
desired, i.e., a zero color gradient normal to the solid surfa

Diffusion boundary conditions

As mentioned, we will study tracer dispersion in narro
gaps between self-affine solid surfaces. Thus, in this si
tion, the BC’s imposed at the solid surfaces becomes a
cial aspect of the simulation method.

In previous works concerning lattice BGK models f
miscible fluids, BC’s imposed on color concentration at so
boundary were not distinguished from those used to simu
fluid flow. In these situations, the relevance of the BC
solid surfaces varies depending on the particular system
der consideration. In some cases, when simulating bulk
cesses, as in@20,21#, there is no need to treat the BC sep
rately, and periodic boundary conditions on all distributi
functions may be used. In other cases, fully thre
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dimensional problems in Helle-Shaw cells are described
terms of the two-dimensional LB model by the modificatio
of the forcing to account for the viscous drag of the top a
bottom plates of the cell@22–24#. Therefore, molecular dif-
fusion in the transverse direction is not described and sim
BC’s can be applied to all fields. In the others, where flu
flows in complex geometries@13# or in narrow channels
bounded by solid surfaces@25,26#, the above-mentioned dis
tinction in BC’s would be desirable.

Here we will use a different set of BC’s for color conce
tration to ensure a zero color gradient normal to the so
surface. To this end, we implement a mirror-reflection co
dition or bounce-forward~BF! rule, where upon collision
only the normal component of the particle velocity
changed. In Fig. 1 we show a schematic view of the
collision rule. The last case was chosen arbitrarily, due to
very simple implementation, among the different possib
ties that satisfy the mirror-reflection-type condition. For i
stance, it would be also consistent to split the incoming c
centration into the two neighboring sites.

Physically, BB has the~approximate! effect of making
both components of the fluid velocity vanish at the sol
consistent with the nonslip condition. A passive tracer m
however, diffuse along a solid boundary, so the relevant c
dition is that only the normal component of the flux vanish
a solid. The bounce-forward rule is the obvious LB realiz
tion of the physical boundary condition.

To answer the question whether this BC improves the
method for miscible fluids we shall present the results
numerical simulations using both BB and BF in two differe
situations: diffusion and Taylor hydrodynamic dispersion
a two-dimensional straight channel.

III. COMPARISON BETWEEN BB AND BF RULES:
NUMERICAL SIMULATIONS

We will exhibit a comparison between BB and BF, in tw
applications, diffusion and Taylor dispersion in a tw

FIG. 1. Schematic view of the bounce-forward collision ru
Solid squares represent solid sites, open circles represent fluid
and solid circles represent particles. Solid lines correspond to
fluid-solid interface, situated halfway between solid and fluid sit
Arrow lines represent incoming and outcoming trajectories.
4-2
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FIG. 2. Vertical dependence o
the color concentration. Horizon
tal axes represent normalized co
centration. For clarity the curves
corresponding to different times
are shifted horizontally by a con
stant value. Results correspond
numerical simulations in a chan
nel of width H510 and lengthL
5512. The initial condition is a
Gaussian color distribution cen
tered atx5256 and withs254.0.
The relaxation parameter islD

50.2 corresponding to a bulk dif-
fusion coefficientDm51.5.
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dimensional channel. These situations are particularly imp
tant in terms of addressing the validity and accuracy of
above-mentioned boundary conditions, particularly if one
interested in further use of them in complex geometries.

A. Diffusion in a two-dimensional straight channel

Diffusion was studied varying the channel widthH from
4 to 40 in grid sites, in a channel of lengthL5512, with
periodic BC’s used at both ends. In the LB model the dif
sion coefficient in bulk is given by

Dm5
1

3 S 1

lD
2

1

2D . ~1!

Varying the relaxation parameterlD we have also studied
diffusive transport for a set of bulk diffusivities ranging fro
Dm58.831024 to Dm51.5.

In all simulations for both boundary rules, the obtain
depth-averaged color concentration displays a Gaussian
tribution, and the mean square displacement grows line
in time. However, the vertical dependence of the concen
tion, as well as the diffusivity values, strongly depends
the BC used. While the concentration remains vertically
mogeneous using BF, in Fig. 2 we show that using BB yie
the undesired effect of a transient vertical variation of col
Two different situations can be distinguished in Fig.
namely, close to the mean position of tracer particles^x& or
far from it. ~Note that^x& is constant in time.! At ^x& @Fig.
2~a!#, the initial concentration gradient drives the tracer p
ticles. Due to the bounce-back rule, particles close to
surface remain there longer, and the relative tracer con
tration builds up. Shortly after, particles close to the surfa
diffuse toward the center of the channel, and eventually
concentration gradient in the vertical direction is smooth
out. On the other hand, far from the mean position of tra
05610
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particles the situation is inverted. Bounce back at solid s
faces makes the tracer particles mostly arrive from the ce
of the channel, and a vertical concentration gradient de
ops. Thus, after several time steps, particles diffuse from
center toward the solid surfaces. At large times, the vert
gradient vanishes and the concentration becomes hom
neous across the channel.

Using BB, the diffusion coefficient strongly depends o
the vertical size of the channel. Diffusive transport close
the solid surfaces is reduced due to the BB rule, yieldin
smaller diffusion coefficient compared to bulk diffusivity
This effect becomes negligible when the gap is large eno
or when the diffusivity is sufficiently small. In Fig. 3 we
show the dependence of the diffusion coefficient~relative to
Dm) on the size of the gap and bulk diffusivity. We als
show that simulations using BF giveD5Dm for any size and
Dm .

As mentioned, the undesired effects due to BB bound
conditions become less significant at small diffusivitie
When usingDm58.831024 the deviation of the numerica
value from the expected one is within 1%. However, the u
of small diffusion coefficients allows large concentratio
gradients, which may result in numerical instability. Discre
ancies between theory and simulations have been reporte
the LB model of miscible fluids, for values ofDm below
1024 @20#. Also, for values ofDm below 1024, oscillations
between negative and positive values of concentration h
been observed@23#. Therefore, the region of parameter spa
where the model is fairly independent of the particu
choice of the boundary condition rule is very close to be
numerically unstable.

B. Taylor dispersion

Finally, we compute the asymptotic hydrodynamic disp
sion when a mean flow is set within the channel. In this ca
dispersion has two different contributions, one due to m
4-3



th

ne

e
or

B
gi
tiv
r-
ra
be

-
s

i-
e-
ot
a

be
lt

in
t
q
th

tly
een

ect
ws
re-
ion

ion
in
t

tion

i-
he
t
that
on
lar

ob-

c-
her.

y a
e,

sin
o
a
-

he

e
grid

GERMAN DRAZER AND JOEL KOPLIK PHYSICAL REVIEW E63 056104
lecular diffusion and the other due to spatial variations of
fluid velocity, namely, Taylor dispersion@1#. Asymptotic
analysis of Taylor dispersion in a two-dimensional chan
of constant widthH and mean flow velocityU gives the
exact formula for the longitudinal dispersion coefficient@6#,

D i5Dm1
1

210

U2H2

Dm
. ~2!

Introducing the Pe´clet number, which accounts for th
relative magnitude of the convective and diffusive transp
Pe5UH/Dm , the previous equation can be rewritten as

D i5DmS 11
Pe2

210D . ~3!

Concerning the numerical simulations, whether the
rule is implemented or not, the Taylor regime for the lon
tudinal dispersion is expected to hold. However, the effec
diffusivity is slowed down when a BB collision at solid su
faces is used. Thus, as the diffusivity is smaller, the cha
teristic homogenization time in the transverse direction
comes larger. In other words, we may expect Eq.~2! to hold,
but whereDm is replaced by the effective diffusion coeffi
cient in the channelD, as measured in diffusion simulation
using BB rule~Sec. III A!. In Fig. 4 we compare the numer
cal results with Eq.~2!. There is very good agreement b
tween the numerical results and the Taylor theory in b
cases, using BB and BF as boundary rules. Let us rem
that solid and dashed lines corresponds exactly to Eq.~2!
with no adjustable parameter, and the only difference
tween them is the molecular diffusivity value. These resu
confirm the previous one, showing that the BB rule dim
ishes the diffusive transport and consequently enlarges
longitudinal hydrodynamic dispersion. A departure from E
~2! at large Pe´clet numbers can also be observed, where

FIG. 3. Normalized diffusion coefficientD/Dm as a function of
the vertical gap size. Solid symbols correspond to simulations u
BB ~for different bulk diffusivities!. Open circles correspond t
simulations using BF andlD50.2. Results were obtained in
straight channel of lengthL5512. The initial condition is a Gauss
ian color distribution centered atx5256 and a widths254.0.
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largest discrepancy is 0.3%. Similar results showing sligh
smaller numerical values than theoretical ones have b
previously reported@26#.

As a conclusion to this section we may say that the eff
of using the same BC on fluid and color distributions slo
down the diffusive transport. This effect becomes app
ciable when the system is narrow enough or the diffus
coefficient is large.

IV. SELF-AFFINE NARROW FRACTURES

We briefly review here the mathematical characterizat
of self-affinity. A more detailed discussion can be found
our previous work@27#. We consider a rock surface withou
overhangs, whose height is given by a single-valued func
z(x,y), where the coordinatesx andy lie in the mean plane
of the fracture. Self-affine surfaces@28# display scale invari-
ance with different dilation ratios along different spatial d
rections~in contrast to self-similar surfaces which stretch t
coordinates with equal ratios!. Experiment indicates tha
isotropy can be assumed in the mean plane, implying
there is only one nontrivial exponent relating the dilati
ratio in the mean plane to the scaling in the perpendicu
direction, i.e.,

z~x,y!5l2zz~lx,ly!, ~4!

wherez is the roughness or Hurst exponent@29#. In all cases
the roughness exponent is chosen as the experimentally
served valuez50.8.

We shall emphasize the limiting situation of narrow fra
tures, in which the two surfaces are very close to each ot
Consider the situation in which a rock of lateral sizeL is
fractured and the two surfaces are simply displaced b
distanceH!L, perpendicular to the mean fracture plan
with no relative shift. The fluctuations~the difference be-

g

FIG. 4. Longitudinal dispersion coefficient as a function of t
Péclet number squared. Solid line corresponds to Eq.~2!. Dashed
line also corresponds to Eq.~2! but usingD measured in diffusion
simulations~instead ofDm). Solid squares and circles refer to th
numerical results using BF and BB, respectively. The channel
is 1631024 and the diffusion coefficient in bulk isDm50.1.
4-4
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TRACER DISPERSION IN TWO-DIMENSIONAL ROUGH . . . PHYSICAL REVIEW E63 056104
tween the maximum and minimum values ofz) scale asR
;Lz. If H is the width of the fracture, then the limitin
situation corresponds toR@H.

In narrow fractures, the correlation between the two si
is an important feature for the dispersion process, and
consider two possibilities. We first study fractures where
upper surface has been simply translated a distanceH normal
to the mean plane, so that the local aperturea(x,y) equals
the constantH. Alternatively, the two surfaces may have
relative lateral displacementd in the mean fracture plane
accompanied by a displacementH in the perpendicular di-
rection, so that the two surfaces do not overlap. In this c
the local aperture is given by the random variable

ad~x,y!5z~x1d,y!2z~x,y!1h. ~5!

It turns out @30# that d is the lateral correlation length fo
fluctuations in the aperture, in the sense thatad(x,y) and
ad(x1Dx,y) decorrelate forDx@d.

Using the self-affine scaling law for the correlation fun
tion,

sz
2~Dx!5^@z~x,y!2z~x1Dx,y!#2&5f~ l !S Dx

l D 2z

, ~6!

wherel is a microscopic length, say, a grain size, such th

sz
2~ l !5f~ l !; l 2, ~7!

we can estimate

DZ~Dx![z~x,y!2z~x1Dx,y!; l S Dx

l D z

. ~8!

For length scalesDx! l it can be seen from the previou
relation thatDZ@Dx ~given thatz is smaller than 1!. On the
other hand, for length scalesDx@ l , it is clear thatDZ
!Dx. We considerl as the lower cutoff of the self-affine
behavior in a real fractured system. This fact largely de
mines the convective-diffusive behavior, as we will discu
later.

In this paper we restrict ourselves to the two-dimensio
case where the surface is invariant in they direction,
z(x,y)5z(x), and the mean flow, when present, is forced
the x direction by a constant pressure drop. In a subsequ
paper we will extend these calculations to fully thre
dimensional fractures, but it is convenient, both conceptu
and in numerical simulations, to regard the system as ha
a translationally invariant third dimension.

We use statistically self-affine surfaces with period
boundary conditions. The periodicity is not a physically e
sential ingredient here, but has some calculational adv
tages in alleviating finite-size effects. The surface is gen
ated by a Fourier synthesis method, based on power
filtering of arrays of independent random numbers@27,31#.

V. DIFFUSION IN NARROW FRACTURES

In this section we study diffusion in two-dimensional se
affine fractures. The approach will be based on the tortuo
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concept@32#. It is a common characteristic in fluid transpo
in porous media, and in fractures in particular, that the ac
path followed by the fluid is very tortuous. In our fracture
two-dimensional systems, a purely geometrical definition
tortuosity can be given, by considering the ratio of the sho
est continuous paths between any two points within the fr
ture to the length of the system projected on to the m
plane@33#. It is clear that, for narrow fractures, this ratio wi
approach the ratio between the length of the surface profil
the xz plane to the distanceDx between the two points
Then, if l e is the true length between the two points sep
rated a distanceDx, we can write, for the tortuosity,

T5
l e

Dx
. ~9!

The tortuosity factorT accounts for the reduction in dif
fusivity, due to irregular geometries,

D5
Dx2

2t
5S Dx

l e
D 2 l e

2

2t
5

Dm

T2
. ~10!

whereDm is the free bulk molecular diffusion coefficient.
For the previous equation to be meaningful one sho

have a constant value ofT, that is, independent ofDx. This is
the case when the effective lengthl e depends linearly on the
size of the system,Dx. For self-similar surfaces, the relatio
between l e and Dx defines the fractal dimensionD f , l e
}DxD f . On the other hand, it has been shown that, for s
affine surfaces, there are several distinct definitions of fra
dimension@34–36#. However, for length scales well abovel
all fractal dimensions becomeD f51 @34–36#, andl e is pro-
portional to Dx. In this work we considerl as the lower
cutoff of the self-affine behavior, and therefore, we only o
serve the situation where the tortuosity factor is constant.
the numerically generated self-affine surfaces used in
work, we tested the dependence of the effective lengthl e on
Dx. Using the method of ‘‘dividers’’@29# to measurel e , we
obtain, in all cases, a linear relation between the divid
openinge and l e(e), i.e., DB51.

The fact thatT is constant has some important cons
quences on diffusive transport. First, the relation betwe
mean square displacement and time should be linear~after
perhaps a transient time!. Second, the distribution of trace
concentration should be asymptotically Gaussian and in
pendent of the initial distribution of tracer. Finally, the co
rection due to tortuosity is strictly geometrical and therefo
it should be independent on the actual value of the free b
molecular diffusivityDm .

In Fig. 5 we show the linear dependence of the me
square displacement on time for different values of the d
fusion coefficient. Many other simulations with different va
ues ofDm and H were performed, and in all cases a line
relation was obtained. In Fig. 6 we show how the sa
Gaussian distribution is approached at long times, star
from three different initial distribution of tracer particles. F
nally, in Fig. 7 we show that the tortuosity factor is a strict
geometrical property, being clearly independent of the dif
sivity of the tracer particles.
4-5
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Tortuosity dependence on the fracture width

In the previous section, we showed that the effect of s
face roughness on diffusion can be accounted for by a pu
geometrical property of the system, the tortuosityT. How-
ever, it remains to analyze the dependence ofT on geometri-
cal parameters that describe the system. Of particular im
tance is the dependence ofT on the width of the fractureH.

The theoretical analysis presented here will closely foll
the kind of approximation used in@27#, where the fracture is
divided into a sequence of quasilinear segments at var
orientation angles. First, we estimate a typical sizej i in the
direction of the mean flow over which the fluctuations in t
vertical direction are small compared to the effective ap

FIG. 5. Mean square displacement as a function of time
different diffusion coefficients. Simulations were performed in
system of lengthL5512 and separation between surfacesH54.
05610
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ly
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ture of the channel. A segment of lengthj i is roughly
straight whenDZ(j i); l (j i / l )z is a small fraction ofH,
which yields

j i; l S H

l D 1/z

. ~11!

Returning to the entire fracture, eachj i channel is ori-
ented at some angleu i with respect to the mean plane an
has effective apertureai5Hcosui and lengthj i

i 5j i /cosui .
Thus, we write, for the total length of the channel,

Le5(
i 51

N

j i
i 5j i(

i 51

N

cos21~u i !. ~12!

Finally, taking into account thatN5L/j i@1 is the number
of channels, we can convert the sum into an average ove
distribution of angles, and write, for the tortuosity,

T5
Le

L
5^cos21~u!&5KAj i

21DZ2~j i!

j i
L '11

1

2 S sz~j i!

j i
D 2

,

~13!

wheresz
2(j i)5^DZ2(j i)& @see Eqs.~6! and ~8!# and, in or-

der to estimate the cosine, we have used the fact that
channels present small vertical fluctuations.

A more precise evaluation can be obtained based o
Gaussian distribution of heights@27#, as supported by experi
mental measurements@30# and, in fact, the actual distribution
given by our numerical procedure for generating self-affi
surfaces. In this case, the angular average is given by

r

-
t

FIG. 6. Evolution of tracer
concentration for different initial
conditions: a Gaussian distribu
tion, two Gaussians centered a
x0525663, and a Lorentzian dis-
tribution squared. The initial dis-
persion is in all casess054.0 and
Dm50.5.
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^cos21u&5E p~DZ!A11S DZ

j i
D 2

5x1/2US 1

2
;2;xD

~14!

wherex5@j i
2/2sz

2(j i)#, and U(a;b;x) is the confluent hy-
pergeometric function of the second kind@37,38#. Therefore,
we can get a more convincing evaluation of the tortuosity
a narrow two-dimensional self-affine fracture using the le
ing terms in the asymptotic representation ofU for large x
and Eq.~11! for the value ofj i ,

T5F11S f~ l !

l 2 D S H

l D (2z22)/zG . ~15!

To compare the previous relation with the numerical
sults, let us first recast it in terms of the diffusion coefficie

Dm2D

Dm
'2C1S H

l D (2z22)/z

, ~16!

where we have added an adjustable parameterC1, which is
expected to be of order 1.

In Fig. 8 we present the decrease in the diffusivity due
the tortuosity of the channel as a function of the distan
between the opposite surfacesH. We find good agreemen
for the predicted exponent (2z22)/z521/2 ~the roughness
exponent isz50.8). The only adjustable parameter is t
coefficientC1, which is found to beC1'0.9, in good agree-
ment with the expected value.

In Fig. 9 we present the numerical results obtained
surfaces with smaller amplitude of the roughness~smaller
value of l ). In this case it is clear that the exponent diffe
from the predicted value. We believe that this discrepa
comes from the discretization of the surface in the numer
simulations. This discrete nature of the numerical surfa

FIG. 7. Diffusion coefficient in the fracturesD as a function of
the free bulk diffusion coefficientDm . The system length and width
areL5512 andH516. Solid circles correspond to simulations wi
Dm55.031021, 1.6731022, 1.031021, 8.7731023, and 8.38
31024. The solid line corresponds to Eq.~10! with a tortuosity
T250.93.
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introduces a discrepancy with the continuous approa
which is more important for small vertical fluctuations in th
surface height. However, we also show in Fig. 9 the theo
ical correction to diffusive transport, computing the tortuo
ity factor directly through the numerically generated surfac
instead of using the asymptotic analysis. In this case g
agreement is recovered and the only adjustable param
C1'2 is again of order 1~and in agreement with previou
results@27#!. Similar results were obtained using several
termediate values for the surface fluctuations in heig
where the reduction in diffusivity is always in agreeme
with the correction due to the tortuosity of the channels.
addition, we found that the decrease in diffusivity is, in

FIG. 8. Correction to the diffusivity due to tortuosity of th
fractures as a function of the gapH. The solid line corresponds to
Eq. ~16! with C150.9. The simulation parameters areL5512, lD

50.5, andz50.8.

FIG. 9. Correction to the diffusive transport when the surfa
fluctuations are small. The solid line is the correction due to
tortuosity of the channel, measured from the numerically genera
surfaces. The dashed line corresponds to the observed reducti
diffusivity when the fluctuations are larger and the dependenc
correctly reproduced by Eq.~16!.
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cases, well described by a power law~where the power-law
exponent decreases slightly with the amplitude of the surf
fluctuations!, for which we have no explanation.

VI. DISPERSION IN NARROW FRACTURES

In this section we address the case of Taylor hydro
namic dispersion in narrow fractures. First, we will analy
the case where the two sides of the fracture are displa
normally to the mean fracture plane, and then we will turn
the case where there is a lateral shift as well.

When the two complementary surfaces are simply d
placed vertically by a distanceH!L, the vertical aperture o
the system is constant everywhere. Nevertheless, the
field differs from one in a straight channel, due to variatio
in the local width of the channel normal to the mean flo
direction. In Fig. 10 we show a set of streamlines insid
fracture, where the effect of the varying effective aperture
the fracture is evident~aperture normal to the mean flow!.
Moreover, in@27# we show that the complex geometry of th
fracture gives rise to low-velocity zones~close to depression
and corners!, reducing the permeability of the system.
order to describe the dispersion process we need to obta
measure of the fraction of the system that is subject to c
vection. To this end we will make use of theL parameter
@39,40#, which is directly related to transport and measu
the dynamically connectedpart of the pore space in porou
media@41,42#. Following Ref.@42#, we write L in terms of
the permeability and tortuosity of the system,

k5
L2

12T2
. ~17!

Note that defining a characteristic length as the ratio betw
pore volumeV and surface areaS would yield V/S5H/T
ÞL, which does not depend on the effects exerted on
fluid flow by the complex geometry of the fracture.

FIG. 10. Streamlines inside a fracture of widthH516, length
L5512, and no lateral shift between complementary surfaces. N
that the closer the angle of the surface top/2, the narrower the
effective width becomes.
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Now, assuming that we have a winding channel of len
Le , effective aperture for convective transportL, and actual
apertureA5H/T ~given by volume conservation!, we may
apply the same reasoning as in Sec. III B to get the disp
sion coefficient. After replacingH by the width of the effec-
tive channelH/T, U by the mean velocity in the convectiv
part of the channelUH/L, and taking into account the tor
tuosity, we obtain

D i5
Dm

T2 F11
Pe2

210S H

LTD 2G . ~18!

Thus, to see how well theL parameter can be used t
estimate the dispersion, we will compare the values obtai
both from dispersion measurements@Eq. ~18!# and from the
permeability@Eq. ~17!#.

In Fig. 11 we show the numerical results obtained for t
dispersion coefficient when varying the injection rate. T
linear behavior shows that, as expected, Taylor dispersio
governing tracer spreading. The fracture gap isH516, the
length of the system isL5512, and the relaxation paramet
used islD51.9. The molecular diffusivity and the lambd
parameters obtained from the best fit areDm5(8.8660.01)
31023 which differs by only 1% from the theoretical value
and L513.460.1. On the other hand, from the flow ra
computed in numerical simulations and estimating the p
meability by Eq.~17!, we getL515.360.2.

We now turn to shifted surfaces. In the presence o
small lateral shiftd between complimentary surfaces, mo
of the previous discussion remains valid. The local apert
now varies with position andH is the average aperture of th
channel. The difference in height between surfaces at
point x along the channel is of orderdz, while the vertical
excursion of the fracture between points separated a dist
Dx is (Dx)z. Therefore, at large length scalesDx@d, the
fracture may be considered as a winding channel of len
Le and effective apertureL and where the ratio between th

te

FIG. 11. Dispersion coefficient as a function of the Pe´clet num-
ber squared. Solid line corresponds to the best fit using Eq.~18!,
with Dm andL as adjustable parameters. Dashed line correspo
to Taylor dispersion in a straight channel with equal apertureH
516.
4-8
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length of the channelLe and the system lengthL is the tor-
tuosity factor.

In Fig. 12 we show the dispersion coefficient, as a fu
tion of the Pe´clet number. The two fracture surfaces are v
tically displaced byH516 and laterally shifted byd58. As
expected, we observed a linear dependence, in agree
with Taylor-like spreading. From the best fit of the numeric
results we obtainDm5(8.560.1)31023, which differs less
that 3% from the theoretical one (lD51.9), andL514.6
60.2, whereas by means of flow rate data computed in
merical simulations and Eq.~17! for the permeability, we
obtainL511.760.5.

Even though estimated values ofL are in fairly good
agreement~within a 20% discrepancy!, it is also clear that
theL parameter fails to completely predict the enhancem
of dispersion due to the complex geometry of the fractur
Nevertheless, we believe that the presence of low-velo
zones is the only possible feature that accounts for the
hancement in the spreading of tracer particles.

Let us note that the uncertainty in the computed disp
sion coefficient is considerably larger than in the case wh
there is no lateral shift. It has been shown, in thre
dimensional fractures and under a lubrication approxima
for the velocity field, that a lateral shift yields geometr
dispersion for tracer particles advected along the flow@43#.
This effect is due to a different mean velocity along differe
streamlines. In our case, the two-dimensional nature of
fractures prevents the presence of geometric dispers
given that the height-averaged velocity is constant throu
out the system. However, an analogous effect appears w
averaging over different fractures, giving rise to a large d
persion in the computed mean velocity and dispersion c
ficient. In fact, from the previous discussion an uncertai
proportional to the mean velocity is expected when aver
ing the dispersion coefficient~corresponding to a geometri
dispersion term in fully three-dimensional fractures!.

FIG. 12. Dispersion coefficient as a function of the Pe´clet num-
ber squared. Solid line corresponds to the best fit using Eq.~18!,
with Dm andL as adjustable parameters. Dashed line correspo
to Taylor dispersion in a straight channel with equal apertureH
516.
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In order to validate the dispersion results obtained
means of the LB method, we shall now compare them w
results computed via a Monte Carlo~MC! approach to the
dispersion process. In the MC method, one follows the d
placement of a large number of particles, or random walk
moving in a two-dimensional fracture. The motion of ea
particle is a combination of the effects of molecular diffusi
and convection~we assume, as in LB simulations, that trac
particles move independently of each other!. In time Dt, a
particle is displaced according to

Dx5u~x!Dt1n̂~4DmDt !1/2, ~19!

whereu(x) is the velocity field obtained by the LB method
n̂ is a unit vector with random orientation, and the amplitu
of the random steps has been chosen so that the varian
any coordinate is 2DmDt @44–46#. Boundary conditions at
solid surfaces are implemented as in@44#, where those ran-
dom steps that would take the particle outside the chan
are suppressed. The sequence of steps is repeated whi
cording the distanceDx from the initial position of the par-
ticle. The process is repeated for a large number of parti
and average values are computed.

We found excellent agreement between the two metho
In Fig. 13 we compare the mean square displacement
function of time obtained using LB and MC methods. T
agreement is evident, and it can be seen that after relea
105 particles in the MC simulations, the noise is negligib
Both simulations corresponds to a fracture of mean aper
H516, lengthL5512, and a lateral shift between surfac
d58. It is also interesting to note, in Fig. 13, a change in
slope at timet;20 000, which approximately corresponds
the characteristic time for transverse diffusion across the
erturetD'H2/2Dm;15 000. Therefore, this marked chang
in slope is showing the transition towards Taylor-like sprea
ing at times larger thantD .

ds

FIG. 13. Mean square displacement of tracer particles as a f
tion of time, in a single fracture~mean apertureH516, shift be-
tween surfacesd58, lengthL5512, mean velocityU'1023, Dm

50.008 771). Solid line and open circles correspond to numer
MC and LB simulations, respectively. Dashed line is the best lin
fit for large times, i.e., the asymptotic linear spreading of the tra
(D57.431023).
4-9
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Dispersion at small Péclet numbers

In a straight channel, the presence of convection increa
the dispersion of tracer particles. The same effect is usu
found in porous media, including fracture systems. Howev
in the case where surfaces are laterally shifted and at
small Péclet number, we observed the opposite behav
That is, the presence of convective transport inside the f
tures reduces the dispersion of tracer particles. This ef
can be observed in Fig. 12; at very small Pe the dispers
coefficient grows as the flow rate decreases. In order to v
date this observation we simulate the dispersion process
two other methods. The first one is the MC method presen
before. The second method is a variation of the MC whe
instead of using the velocity field computed by means of
simulations, we use lubrication approximation for velocitie
In the lubrication approximation the velocityu(x,z) is given
by

u~x,z!5
6Q

H3~x!
z@H~x!2z#, ~20!

whereH(x) is the local aperture of the fracture.
In Fig. 14 we show the results obtained using the th

different methods in a range of Pe from 0 to 4. The agr
ment between methods is excellent and all show an in
decrease in dispersion due to the presence of weak con
tive transport. We believe that, at very low velocities, t
main effect of convective transport is to carry out tracer fro
low-velocityzones, thus reducing dispersion. This expla
tion is supported by the fact that the lubrication approxim
tion yields very similar results.~Note that this approximation
assumes a local Poiseuille profile without accounting
possible stagnant zones.! Unfortunately, the small Pe´clet
numbers at which this surprising effect arises make it v
difficult to be experimentally measured.

FIG. 14. Dispersion coefficient at low Pe´clet numbers. Different
results correspond to different simulation methods. Solid circ
correspond to LB method. Squares correspond to MC simulat
where the velocity was computed using LB. Triangles correspon
MC simulations using the velocity field given by the lubricatio
approximation.
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VII. CONCLUSIONS

In the first place, we have presented a set of bound
conditions to describe diffusive transport within the lattic
Boltzmann method. We tested this boundary rule in two s
ations, simple diffusion and Taylor dispersion in tw
dimensional straight channels. We showed that the propo
bounce-forward rule improves the accuracy of the meth
and does not possess the undesirable effects of the bou
back rule, i.e., dependence of the diffusion coefficient on
aspect ratio of a straight channel and transient concentra
gradients near solid walls. Even though the accuracy m
be recovered in the BB case using small diffusivities,
showed that this option leads the simulations towards
numerical instability border.

We then turn to study diffusive transport in two
dimensional self-affine fractures. First, we showed that
slowdown in diffusive transport can be accounted for by
purely geometric tortuosity factor. Our numerical simul
tions have verified all the implications of this result, that
linear spreading in time, Gaussian distribution of tracer, a
independence of geometrical effects on the actual value
the diffusivity. Second, using analytic arguments in the lim
of small aperture fluctuations, we have obtained an exp
sion for the tortuosity in terms of the fracture gap and t
Hurst exponent characterizing the fracture surface. Num
cal simulations verify the validity of the theoretical approa
even when the discrete nature of the surface seems to a
the asymptotic scaling law.

Finally we studied tracer dispersion in fractures in t
presence or not of a lateral shift between complemen
surfaces. In both cases we showed that tracer spreading
be described as analogous to Taylor-like dispersion in
straight channel. In the case without a lateral shift
showed that the enhancement in dispersion can be mo
understood assuming an effectively reduced aperture
fluid transport due to the rugosity of the surface. TheL
parameter measuring this effective aperture, and comp
from permeability measurements, was shown to be simila
that estimated from dispersion measurements. We also
sented a result showing a decrease in tracer dispersion w
convective transport is set in the fracture. This last obser
tion was obtained in the framework of three different n
merical approaches.
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